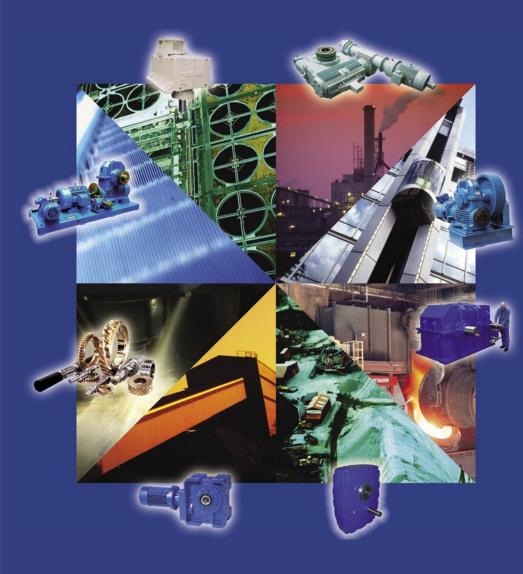

Hydrastart Couplings



www.renold.com

Strength through Service Renold Gears has been manufacturing high quality, high specification gear units for over 100 years and has always been at the leading edge of gear technology with innovative products and power transmission solutions.

Interchangeability

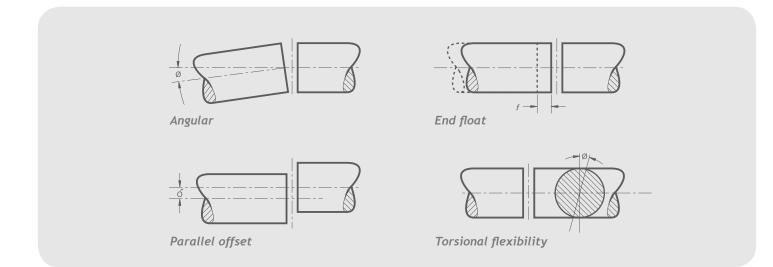
Many of the products from Renold Gears are dimensionally interchangeable with other manufacturers gear units, allowing a trouble free replacement of gearboxes, in most cases upgrading the capacity through state of the art technology and materials.

Custom Made

Renold Gears is unique in it's ability to offer custom made products designed to meet customers exacting requirements without compromise on availability and cost. From complete package solutions to individual precision replacement gears, all can be tailor made to meet specific applicational requirements.

Available

The most popular ranges of gearboxes are available from local distribution stock, backed up by extensive stocks from our manufacturing plant in the UK.



www.renold.com

Contents

Page No **Renold Gears** inside front cover 02 **Coupling Selection Guide** 03 Load Classification by Application Service Factors and Selection 04 Key and Keyway Dimensions 05 Hydrastart Fluid Coupling 06 **Operating Principles** 07 **Delayed Fill** 80 'Soft' Starting 09 Hydrastart Selection Chart 10 11 **Coupling Rating Tables** Standard Available Options 12 **Overload Protection** 13 Hydrastart Pinflex Coupling - Dimensions (mm) 14 Hydrastart Pinflex Coupling - With Brake Attachment 15 Hydrastart Gearflex Coupling - Dimensions (mm) 16 Hydrastart Pulley - Dimensions (mm) 17 Hydrastart Drop-in 18 **Renold Chain** inside back cover

Coupling Selection Guide

Flexible Couplings should be used to accommodate any combination of misalignment conditions described below.

At installation all couplings should be aligned as near to perfect as possible.

1. Angular

Angular misalignment is present when the shaft axes are inclined one to the other. Its magnitude can be measured at the coupling faces.

2. Parallel Offset

Axial misalignment is present when the axes of the driving and driven shafts are parallel but laterally displaced.

3. End float (axial)

End float is the ability to accommodate a relative axial displacement of the connected shafts; achieved by sliding members or flexing of resilient components.

4. Torsional flexibility

Torsional flexibility is a design feature necessary to permit shock and impulsive loadings to be suitably dampened. It is achieved by the provision of a flexible medium such as rubber, springs, etc., between the two halves of the coupling.

Selection

In order to select the correct type and size of coupling, the following basic information should be known:

Power to be transmitted

- (a) Normal.
- (b) Maximum.
- (c) Whether continuous or intermittent.

Characteristics of the drive

- (a) Type of prime mover and associated equipment.
- (b) Degree of impulsiveness of driven load.

Speed in revolutions per minute

(a) At which normal power is transmitted.(b) At which maximum power is transmitted.(c) Maximum speed.

Dimensions of shafts to be connected

- (a) Actual diameter.
- (b) Length of shaft extension.
- (c) Full keyway particulars.

Selection

When the input drive is not steady (i.e. not from an electric motor), and/or the driven load is impulsive, the actual power is multiplied by a Service Factor from the Table 2 (page 13).

Selection Procedure

1. Nominal power in kW to be transmitted = K.

2. Select appropriate load classification from Table 1, denoted as either S, $\ensuremath{\mathsf{M}}$ or H.

3. From Table 2, establish Service Factor(s) to be applied, taking into account hours of operation/day and prime mover = fD.

4. From Table 3 select factor for the required frequency of starts/hr = fS.

- 5. Selection Power Ks = K x fD x fS
- 6. Equivalent power at 100 RPM = Ks x 100

RPM

7. Check that coupling selected will accept the required shaft diameters. Should shaft diameter exceed maximum permissible, then re-select using next larger size of coupling.

Load Classification by Application

able 1		Dry dock cranes	(2)	Planer feed chains	M	Presses	
Agitators		Main hoist	(2)	Planer floor chains	M	Pulp machine reel	
	S	Auxiliary hoist	(2)	Planer tilting hoist	Μ	Stock chest	
Pure liquids		Boom, luffing	(2)	Re-saw merry-go-round conveyor	Μ	Suction roll	
iquids and solids	M	Rotating, swing or slew	(3)	Roll cases	Н	Washers and thickeners	
iquids - variable density	м	Tracking, drive wheels	(4)	Slab conveyor	Н	Winders	
lowers		Elevators	()	Small waste conveyor-belt	S	Printing presses	-
entrifugal	S	Bucket - uniform load	S	Small waste conveyor-chain	M		
obe	M			Sorting table	M	Pullers	
ane	S	Bucket - heavy load	M	Tipple hoist conveyor		Barge haul	
	5	Bucket - continuous	S		M	Pumps	
rewing and distilling		Centrifugal discharge	S	Tipple hoist drive	M	Centrifugal	-
ottling machinery	S	Escalators	S	Transfer conveyors	Μ	Proportioning	
rew kettles - continuous duty	S	Freight	Μ	Transfer rolls	Μ	Reciprocating	
ookers - continuous duty	S	Gravity discharge	S	Tray drive	Μ	single acting: 3 or more cylinders	
Ash tubs - continuous duty	S	Man lifts	*	Trimmer feed	Μ	double acting: 2 or more cylinders	
cale hopper - frequent starts	Μ	Passenger	*	Waste conveyor	Μ		
an filling machines	S	Extruders (plastic)		Machine tools		single acting: 1 or 2 cylinders	
				Bending roll	Μ	double acting: single cylinder	
ane knives (1)	М	Film	S			Rotary - gear type	
ar dumpers	н	Sheet	S	Punch press - gear driven	H	Rotary - lobe, vane	
ar pullers	Μ	Coating	S	Notching press - belt drive		Rubber and plastics industries	
•		Rods	S	Plate planners	Н	Crackers (1)	1
larifiers	S	Tubing	S	Tapping machine	Н	Laboratory equipment	
lassifiers	Μ	Blow moulders	M	Other machine tools			
lay working machinery		Pre-plasticiers	M	Main drives	Μ	Mixed mills (1)	
rick press	Н	•	m	Auxiliary drives	S	Refiners (1)	
riquette machine	H	Fans	<i>_</i>	Metal mills	-	Rubber calenders (1)	
		Centrifugal	S			Rubber mill, 2 on line (1)	
lay working machinery	M	Cooling towers		Drawn bench carriage and		Rubber mill, 3 on line (1)	
ug mill	м	Induced draft	*	main drive	Μ	Sheeter (1)	
ompressors		Forced draft	*	Pinch, dryer and scrubber		Tyre building machines	
entrifugal	S	Induced draft	Μ	rolls, reversing	*	Tyre and tube press openers	
obe	Μ	Large, mine etc.	Μ	Slitters	м	Tubers and strainers (1)	
eciprocating - multi-cylinder	Μ	Large, industrial	M	Table conveyors nonreversing		Warming mills (1)	
eciprocating - single cylinder	H	Light, small diameter	S	group drives	Μ	3 ()	
		U	5	Individual drives	Н	Sand muller	
onveyors - uniformly loaded or fe		Feeders		Reversing	*	Screens	ſ
pron	S	Apron	Μ	Wire drawing and flattening machine	Μ	Air washing	-
ssembly	S	Belt	м			Rotary, stone or gravel	
elt	S	Disc	S	Wire winding machine	Μ	Travelling water intake	
ucket	S	Reciprocating	Н	Mills, rotary type		U	_
hain	S	Screw	Μ	Ball (1)	Μ	Sewage disposal equipment	
light	S	Food industry		Cement kilns (1)	Μ	Bar screens	
lven	S			Dryers and coolers (1)	Μ	Chemical feeders	
crew	Š	Beef slicer	M	Kilns other than cement	Μ	Collectors	
	2	Cereal cooker	S	Pebble (1)	M	Dewatering screws	
Conveyors - heavy duty		Dough mixer	Μ	Rod, plain & wedge bar (1)	M	Scum breakers	
ot uniformly fed		Meat grinder	Μ			Slow or rapid mixers	
pron	Μ	Generators - not welding	S	Tumbling barrels	Н	Thickeners	
ssembly	Μ	Hammer mills	H	Mixers		Vacuum filters	
elt	Μ		п	Concrete mixers continuous	Μ		
ucket	M	Hoists		Concrete mixers intermittent	Μ	Slab pushers	Ľ
hain	M	Heavy duty	Н	Constant density	S	Steering gear	Ĵ
		Medium duty	Μ	Variable density	M	Stokers	6
light	M	Skip hoist	M		M		Ļ
ive roll		Laundry		Oil industry		Sugar industry	Γ
lven	Μ			Chillers	Μ	Cane knives (1)	
eciprocating	Н	Washers - reversing	M	Oil well pumping	*	Crushers (1)	
crew	Μ	Tumblers	м	Paraffin filter press	Μ	Mills (1)	
haker	Н	Line shafts		Rotary kilns	Μ	Textile industry	
rane Drives - not dry dock		Driving processing equipment	Μ	Paper mills		Batchers	4
lain hoists	S	Light	S	Agitators (mixers)	٨٨		
	3 *	Other line shafts	S		M	Calenders	
ridge travel	*	· · · · · · · · · · · · · · · · · · ·	5	Barker - auxiliaries hydraulic	M	Cards	
rolley travel		Lumber industry		Barker - mechanical	Н	Dry cans	
rushers		Barkers, hydraulic, mechanical	M	Barking drum	Н	Dryers	
re	Н	Burner conveyor	м	Beater and pulper	Μ	Dyeing machinery	
tone	Н	Chain saw and drag saw	Н	Bleacher	S	Looms	
ugar (1)	M	Chain transfer	Н	Calenders	Μ	Mangles	
		Craneway transfer	Н	Calenders - super	Н	Nappers	
redges		De-barking drum	H	Converting machine except		Pads	
able reels	M	Edger feed	M		м		
onveyors	Μ	Gang feed		cutters, platers		Range drives	
utter head drives	Н		M	Conveyors	S	Slashers	
ig drives	Н	Green chain	M	Couch	Μ	Soapers	
Anoeuvring winches	M	Live rolls	Н	Cutters, platers	Н	Spinners	
umps	M	Log deck	Н	Cylinders	Μ	Tenter frames	
	H	Log haul - incline	Н	Dryers	Μ	Washers	
creen drive		Log haul - well type	Н	Fell stretcher	M	Winders	
tackers	M	Log turning device	Н	Fell whipper	H		
				i cit willppci		Windlass	
tility winches	M	Main log conveyor	Н	Jordans	Μ		-

Key

S = Steady

- M = Medium Impulsive
- H = Highly Impulsive
- * = Refer to Renold
- (1) = Select on 24 hours per day service factor only.

(2) = Use service factor of 1.00 for any duration of service.

- (3) = Use service factor of 1.25 for any duration of service.
- (4) = Use service factor of 1.50 for any duration of service.

Note

Machinery characteristics and service factors listed in this catalogue are a guide only. Some applications (e.g. constant power) may require special considerations. Please consult Renold.

Service Factors and Selection

Table 2 Service Factor (fp)

Prime mover		Driven machiner	y characteristics	
(Drive input)	Duration service hours/day	Steady load	Medium impulsive	Highly impulsive
Electric, air & hydraulic Motors or steam turbine (Steady input)	Intermittent - 3hrs/day max 3 - 10 over 10	0.90 1.00 1.25	1.00 1.25 1.50	1.50 1.75 2.00
Multi-cylinder I.C. engine (Medium impulsive input)	Intermittent - 3hrs/day max 3 - 10 over 10	1.00 1.25 1.50	1.25 1.50 1.75	1.75 2.00 2.25
Single-cylinder I.C. engine (Highly impulsive input)	Intermittent - 3hrs/day max 3 - 10 over 10	1.25 1.50 1.75	1.50 1.75 2.00	2.00 2.25 2.50

Table 3 Factor for Starts/Hour(fs)

No of starts per hour	0-1	1-30	30-60	60-
Factor	1,0	1,2	1,3	1,5

Example of Selection

Coupling is required to transmit 7.5kW at 1440 RPM to connect an electric motor to a gear box driving a chain conveyor running for 18 hours/day and starting 15 times/hour. Shaft diameters /55mm respectively.

K = 7.5kW

From Table 1 Load Classification = M (medium impulsive)

From Table 2 Service Factor fD = 1.5

From Table 3 fs = 1.2

Therefore selection kW is:-

 $Ks = K \times f_D \times fS$

= 7.5 x 1.5 x 1.2

= 13.5 kW

Equivalent power at 100 RPM =

RPM 13.5 x 100

=

```
1440
```

= 0.9375kW @ 100RPM

Ks x 100

From page **17** selection is RSC110 (644911) (maximum bore 55 mm).

It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide.

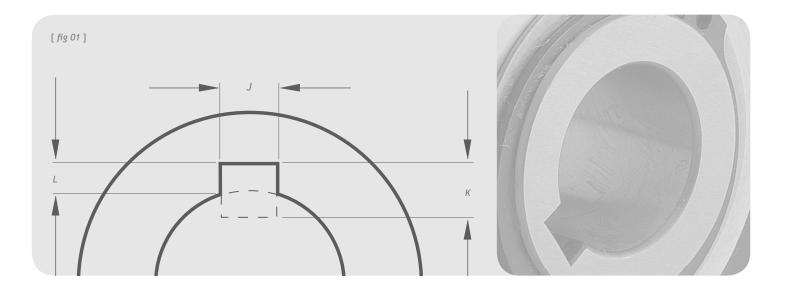
Key Stress

1. Permissible key stress = 70N/mm²

2. Nominal torque TKM = K x 9550 / RPM Nm

- 3. Force at key F = TKM /r
- 4. Shaft Rad r. metres
- 5. Key area A = J x HUB length mm (Obtain from relevant catalogue page).
- 6. Key stress $fk = F/A N/mm^2$
- 7. If resultant stress is less than 70 N/mm² key stress is acceptable.
 If resultant fk is greater than 70, consider either two keyways or extending hub length.
- 8. Example:

 $T_{KM} = 7.5 \times 9550/1440 = 49.7Nm$ r = 55/2 = 27.5mm ÷ 1000 = 0.0275m F = 49.7/0.0275 = 1741N A = 16 x 45 = 720mm² fk = 1741/720 = 2.4M/mm²


Selection is therefore good.

For operation above 80% of the declared maximum coupling speed it is recommended that the coupling is dynamically balanced.

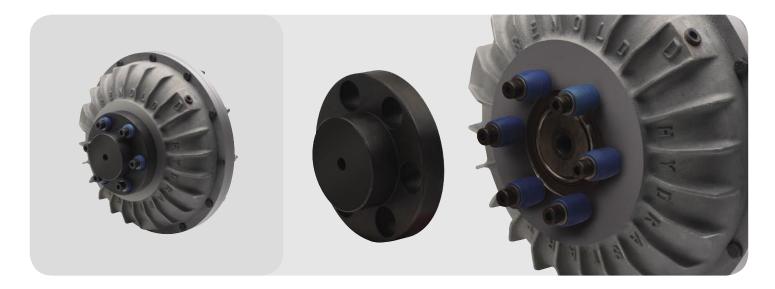
Rotating equipment must be provided with a suitable guard before operating or injury may result.

Key and Keyway Dimensions

Metric (mm)

Keyways comply with BS4235: Part 1: 1972

Sha	aft dia.		Key & keywa	у
Over	Incl.	J	К	L
6	8	2	2	1.0
8	10	3	3	1.4
10	12	4	4	1.8
12	17	5	5	2.3
17	22	6	6	2.8
22	30	8	7	3.3
30	38	10	8	3.3
38	44	12	8	3.3
44	50	14	9	3.8
50	58	16	10	4.3
58	65	18	11	4.4
65	75	20	12	4.9
75	85	22	14	5.4
85	95	25	14	5.4
95	110	28	16	6.4
110	130	32	18	7.4
130	150	36	20	8.4
150	170	40	22	9.4
170	200	45	25	10.4
200	230	50	28	11.4


Imperial (inches)

Keyways comply with BS46: Part 1: 1958

Sha	aft dia.		Key & keywa	у
Over	Incl.	J	K	L
0.25	0.05	0.125	0.125	0.060
0.50	0.75	0.187	0.187	0.088
0.75	1.00	0.250	0.250	0.115
1.00	1.25	0.312	0.250	0.090
1.25	1.50	0.375	0.250	0.085
1.50	1.75	0.437	0.312	0.112
1.75	2.00	0.500	0.312	0.108
2.00	2.50	0.625	0.437	0.162
2.50	3.00	0.750	0.500	0.185
3.00	3.50	0.875	0.625	0.245
3.50	4.00	1.000	0.750	0.293
4.00	5.00	1.250	0.875	0.340
5.00	6.00	1.500	1.000	0.384

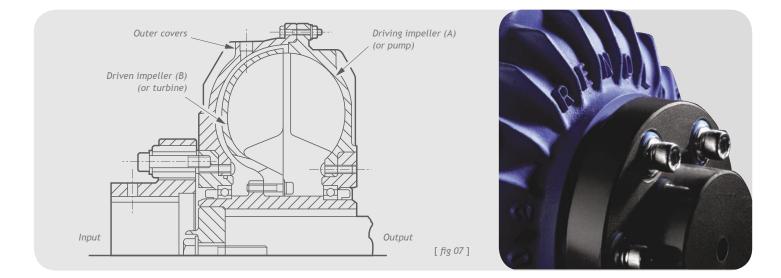
Keyway dimensions [fig 01] Parallel keyways are supplied unless customer states otherwise.

Hydrastart Fluid Coupling

A fluid coupling suitable for soft starting high inertia machinery with reduced current demand, controlled acceleration and torque with motor overload protection.

Coupling capacity

- Maximum power @ 1500RPM 600kW
- Maximum torque: 3500RPM


Features and benefits

- High inertia controlled torque to 700 kW.
- Soft start motor starts on low load.
- Allows use of standard squirrel cage motors.

- Overload protection fusible plug safeguards equipment.
- Dampens torsional vibration, reducing mechanical stress - extends machine life.
- Delay fill version extends acceleration time and reduces startup torque.
- Can match load and speed on multi drives.

- Energy saving through reduced current demand at start-up.
- Coupling and V pulley types design flexibility.

Operating Principles

The coupling is partially filled with hydraulic oil to a level suitable for the absorbed power of the application and the acceleration characteristics of the driven machinery. The optimum oil fill is that which just allows the driven machine to accelerate from rest, thus providing the best drive overload protection.

Power is supplied to the input side of the coupling by either an electric motor or diesel engine. This causes the driving impeller (A) [$fig \ 07$] to be rotated at motor speed, oil is thrown outwards by centrifugal force. The flow of oil is directed across the blades of the impeller towards the opposing turbine (B). Kinetic energy is absorbed by the turbine and translated into torque, which is always equal to the input torque and produces rotation of the output member (in the same direction as the driver).

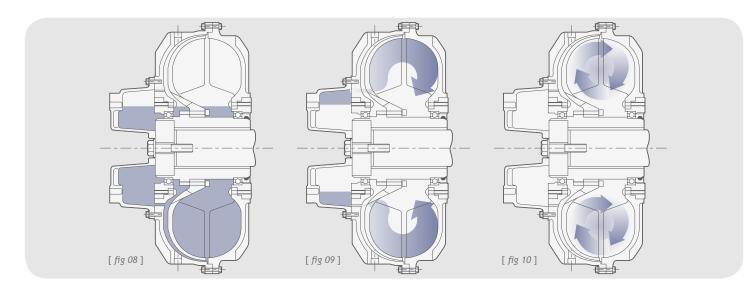
The low resistance of the impeller at start up allows the motor to quickly accelerate to full speed. The driven load accelerates smoothly to within a small percentage of the motor speed.

This speed difference is referred to as slip and must always be present for the successful operation of a fluid coupling.

Typical values of slip will vary between 2% (large power) and 6% (small power).

All hydraulic couplings can be driven in either directions of rotation.

The input and output positions shown are standard, but the input can be from either side of the coupling.


The standard drive arrangement allows the outer cover to be rotated whilst at rest to facilitate oil filling.

However, if a brake drum or disc brake is fitted, the brake should be at the coupling output. See page 67.

To calculate slip %

(Input speed - output speed) x 100 Input speed

Delayed Fill

Hydrastart Delayed Fill Chamber (Type HS...R)

HydraStart (constant fill) hydraulic couplings having a maximum oil fill will limit the starting torque to approximately 200% of nominal torque. It is possible to reduce this figure by reducing the quantity of oil in the circuit.

The disadvantage of this method is that it produces increased slip and higher operating temperatures. To overcome these

problems a delay fill chamber is available on sizes HS8 and above.

This chamber is a modular option and allows a calibrated oil feed into the working circuit. In this way, starting torque can be reduced whilst minimising slip under normal running.

At rest [fig 08]

With the drive at rest, oil drains from the working circuit into the delay chamber.

Accelerating [fig 09]

At start up the coupling will transmit limited torque, allowing the motor to reach rated speed quickly. Oil flows from the chamber to the working circuit proportionally to the speed.

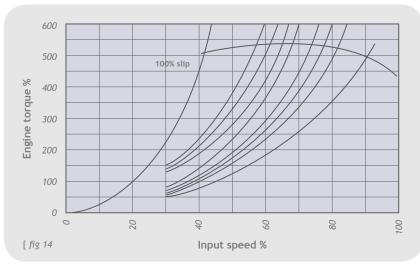
Running [fig 10]

When the coupling achieves its rated speed, almost all of the oil is in the working circuit and the torque is transmitted at the minimum slip value.

The outer case of the Hydrastart coupling can become hot during operation. Do not touch the coupling or a burn may result.

Do not attempt to change the coupling oil during or soon after operation has ceased, as the oil may be hot and could cause burns.

'Soft' Starting


Effect of starting on electric motors

If a machine is driven by a squirrel cage motor without the use of a HydraStart fluid coupling, the following conditions arise [fig 11].

- 1. Motor will pull out 250/280% FLT.
- 2. Motor will consume 6 times FL amps.
- 3. Increase in motor temperature.

Star-delta starting reduces overheating. However, the starting torque in star is only 30% that in delta and it is often necessary to use larger or more complicated wound motors, particularly with high inertia machinery.

- A = Locked rotor torque
- B = Stall torque 250/280%
- C = Normal torque 100%
- I = Amperage

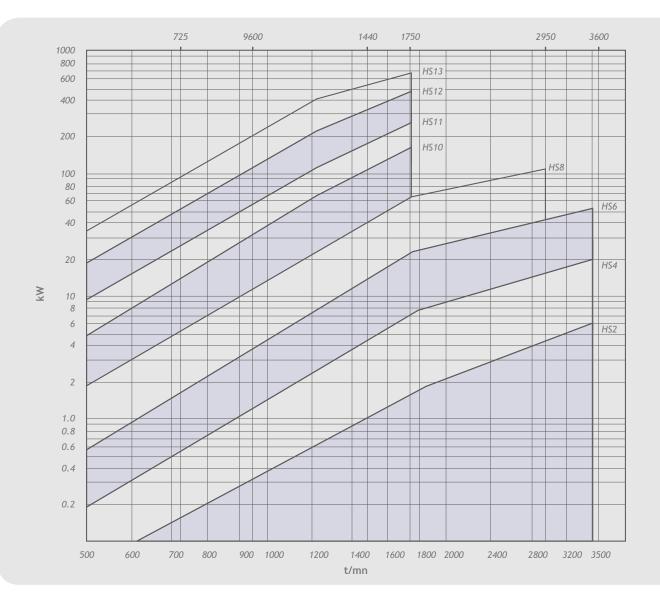
Effect of starting of electric motors when fitted with HydraStart Couplings

When a drive includes a HydraStart coupling the motor starts on low load, with only an instantaneous current peak at switch on [fig 12]. At start up all the motor torque is available to accelerate the motor rotor and coupling impeller (pump).

The driven impeller (turbine) increases speed smoothly from zero rpm until the 100% slip curve intersects the motor torque curve at approximately 85% motor speed [fig 13]. When the torque developed by the HydraStart coupling matches the resisting torque of the driven machine, acceleration of the load commences and continues up to running speed which will be between 94% and 98% of the driving speed depending on the coupling size.

HydraStart couplings fitted on diesel engines

HydraStart fluid couplings can be used with all types of


industrial machinery driven by internal combustion engines. [*fig 14*] shows typical engine and coupling performance curves.

The horizontal curve represents the engine's torque curve whilst the vertical shows the torque capacity of the coupling for different slip values and speeds. As load on the driven shaft increases it demands torque, causing the coupling to slip at higher level.

If still greater loads are demanded then the coupling will eventually slip at 100%. Note this does not happen until the engine has developed peak torque.

Thus by using a fluid coupling, it permits an engine to develop maximum torque without stalling under load and promotes rapid acceleration to normal load speed.

Hydrastart Selection Chart

Larger coupling sizes are available up to 2000kW at 1400 RPM

This chart may be used for the selection of coupling size. If your selection falls on a dividing line, always select the next largest size and use reduced oil fill.

Hydrastart couplings can be used for up to five equi-spaced starts per hour.

Rotating equipment must be provided with a suitable guard before operating or injury may result. Applications requiring more than five starts an hour should always be referred to Renold.

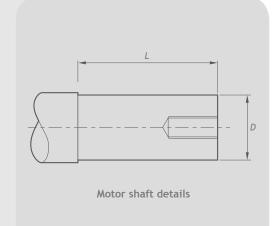
NOTE: Hydraulic couplings will not compensate for an undersized electric motor.

It is the responsibility of the system designer to ensure that the application of the coupling does not endanger the other constituent components in the system. Service factors given are an initial selection guide.

Hydrastart

Size

HS2


HS4

HS6

HSA

Coupling Rating Tables

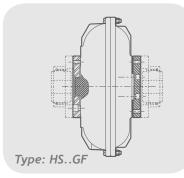
Maximum rating table Motor speed / kW Coupling ref 750 1000 1200 1800 HS2 0.13 0.37 0.56 1.1 1.7 HS4 0.56 1.34 2.4 4.5 7.4 HS6 1.7 4.0 7.5 15 24 HS8 13 45 65 5.5 23 HS10 37 155 15 65 110 HS11 27 63 116 200 273 HS12 54 125 234 400 502 HS13 97 200 350 587 694

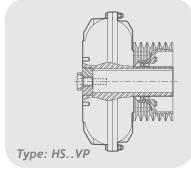
For selection requiring larger powers contact Renold.

	Motor			750	rpm
Frame	Shaft	details	Pov	ver	Hydrastart
Size	D (mm)	L (mm)	kW	HP	Size
80	19	40			
80	19	40			
80	19	40			
90S	24	50			
90L	24	90			
100L	28	60	0.75	1	
100L	28	60	1.1	1.5	HS6
112M	28	60	1.5	2	
132S	38	80	2.2	3	
132S	38	80			
132M	38	80	3	4	HSA
132M	38	80			
160M	42	110	4	5.5	
160M	42	110	5.5	7.5	
160L	42	110	7.5	10	
180M	48	110			
180L	48	110	11	15	
200L	65	110	15	20	
200L	55	110			
225S	60	140	18.5	25	HS10
225M	65	110			
225M	60	140	22	30	
250S	60	140			
250S	70	140	30	40	
250M	60	140			
250M	70	140	37	50	HS12
280S	65	140			
280S	80	170	45	60	
280M	65	140			
280M	80	170	55	75	
315S	85	170	75	100	
315M	85	170	90	125	HS13
315L	85	170			
315L	85	170			
315L	85	170			
355S	100	210			
355S	100	210			
355M	100	210			
355L	100	210			
355L	100	210			
355L	100	210			

	1000	rpm	
Pov	ver	Hydrastart	
kW	HP	Size	k
0.25	0.33	HS2	
0.37	0.5		0.
0.55	0.75		0.
0.75	1	HS4	1
1.1	1.5		1
1.5	2		2
2.2	3	HS6	
3	4		5
4	5.5		7
5.5	7.5		
7.5	10	HSA	1
11	15		1
			18
15	20		2
18.5	25		3
22	30	HS10	3
			S
30	40		4
37	50		5
57	30		J
45	60	HS11	7
55	75		9
75	100	116.40	1
90	125	HS12	1.
110 132	150 175		1:
152	200	HS13	20
150	200	1010	2
185	250		2!
200	270		28
			3
			3!

	1500	rpm		3000) rpm
Pov		Hydrastart	Pov	ver	Hydr
kW	HP	Size	kW	HP	Śi
0.55	0.75		0.75	1	
0.75	1	HS2	1.1	1.5	н
1.1 1.5	1.5		1.5 2.2	2	н
2.2	2 3	HS4	2.2	3 4	
3	4	П 3 4	<u> </u>	4	
4	5.5		4	5.5	
5.5	7.5		5.5	7.5	
5.5	7.5		7.5	10	
7.5	10	HS6	7.5	10	Н
7.5		1150			
11	15		11	15	
			15	20	
15	20		18.5	25	
18.5	25		22	30	
22	30				
30	40	HSA	30	40	Н
			37	50	
37	50				
			45	60	
45	60				
			55	75	
55	75				Н
		HS10	75	100	
75	100				
			90	125	
90	125				
110	150		110	150	
110 132	150 175	HS11			
152	200	пэтт			
185	250				
200	270				
225	300				
250	335	HS12			
280	375	11312			
315	420				
355	475				
375	503				
400	536				


Standard Available Options


Non delay fill

Type: HS..PF

Type: HS..B

Type: HS..K

Description

Basic coupling

Sleeve bored to suit motor shaft and incorporating Pinflex output coupling. Capable of accepting some misalignment. Flexible buffers can be replaced in situ.

Page 66

Brake drum options

Brake disc options

disc, metric or inch sizes.

Gear half couplings

or disc options available.

Vee Pulley Mounting

Basic Pinflex coupling with the addition of a brake drum, metric or inch sizes.

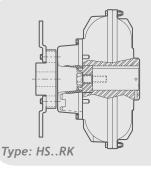
Basic Pinflex coupling with the addition of a brake

Basic coupling incorporating two Flexible

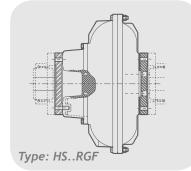
Sleeve bored to suit motor shaft. Pulley is attached using external bolts and may easily be replaced.

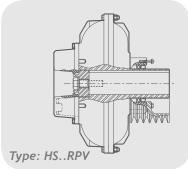
Capable of accepting some misalignment and allowing removal of HydraStart coupling without displacing either motor or driven shaft. Brake drum

Page 67

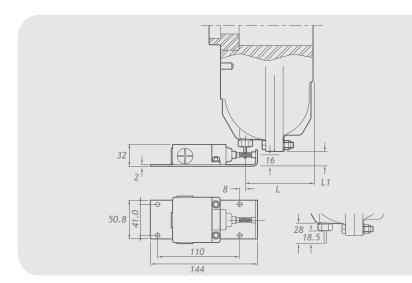

Page 67

Page 68


Page 69


Type: HS..RB

Type: HS..RPF


Delay fill

Type HSPF, HSB, HSK and HSVP may be used for vertical applications. Please contact Renold for details.

Overload Protection

When a hydraulic coupling experiences overload there is a correspondingly high slip value accompanied by a rise in the oil temperature. To prevent damage to the drive there are three options available.

1. Fusible plug

This is fitted as standard on all HydraStart couplings sizes 4 and above. The standard plug is set to fuse at 138°C. Another option available allows fusing at 183°C. Because oil is discharged when the plug fuses it is advisable to correctly guard couplings using this type of device.

2. Thermal trigger

Fitted as an option on HydraStart couplings sizes 6 and above, this device prevents oil being discharged from the coupling at overload. As with the fusible plug, two melt temperatures are offered. When melt point is reached a pin is released which engages with a limit switch. The signal from this switch can operate an alarm or switch off the electric motor to protect the drive. After the cause of the overload has been removed the drive can be restarted after replacing the thermal trigger.

3. Non-contact sensor

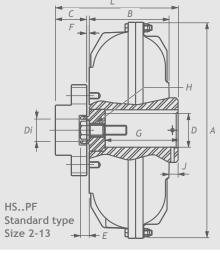
Non-contact speed and heat sensors can be supplied which shut down the drive in the event of overload. Please contact Renold for more information.

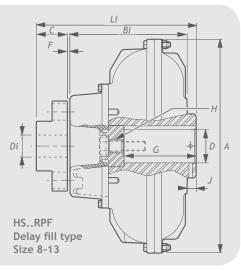
HydraStart thermal trigger

Size	А	L	Li
HS6	345	93.7	21.5
HS8	422	123.2	20.0
HS10	511	146.1	16.0
HS11	580	144.5	10.5
HS12	669	173.3	10.5

Operating principles

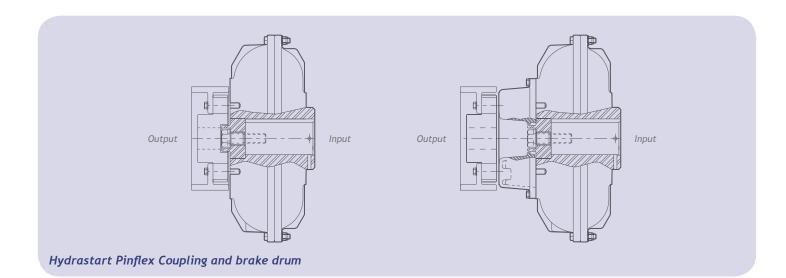
This device will trigger the limit switch if the oil temperature reaches a predetermined level without loss of oil from the coupling. Fusible trigger plug 117°C alternatively 138°C.


Electrical characteristics

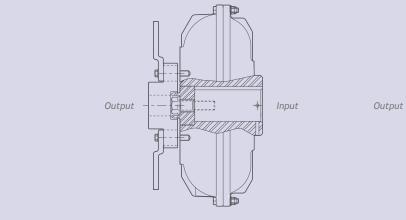

2-Pole 1N/C + 1N/O, conforms to IEC 529 IP 66, contact type XCK rating 500V AC-15

3-20mm ISO Cable Entries.

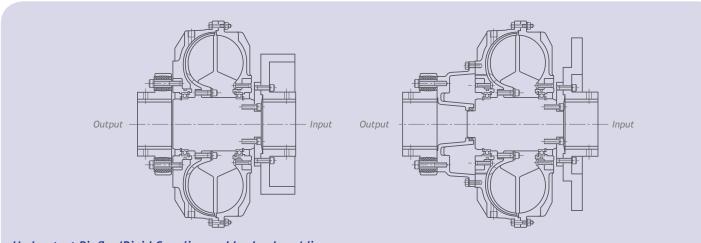
Hydrastart Pinflex Coupling - Dimensions (mm)



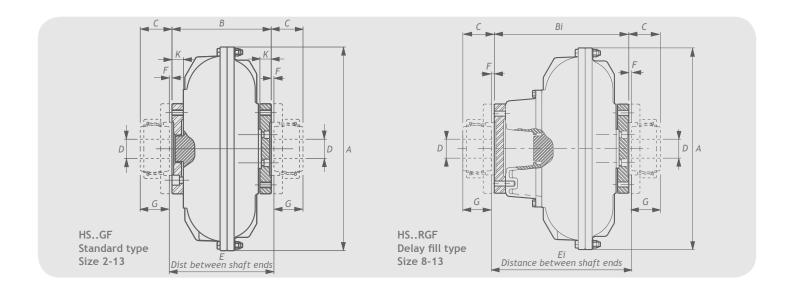
Size	A	В	Bi	С	D Max	Di Max	E	F	G*	н	J	L	Li	Pinflex Cplg Size	Weight kgs	WR ² kgm ²
HS2	229	90	-	44	29	50	13	4	80	0.625" 11 UNC	8	146	-	1	6.7	0.02
HS4	286	107		44	42	50	13	4	95	0.625" 11 UNC	7	162		1	10.9	0.06
HS6	345	130	-	50	52	55	16	5	114	0.75" 10 UNC	10	195	-	2	20.8	0.16
HS8	422	161	238	75	75	80	20	6	137	1.00" 8 UNC	19	261	338	4	41.2 43.9	0.46 0.49
HS10	511	191	268	89	85	110	20	6	178	1.00" 8 UNC	25	311	388	5	65.2 69.7	1.05 1.11
HS11	580	205	296	110	102	130	20	7	195	1.00" 8 UNC	25	347	438	6	107.4 113.6	2.17 2.26
HS12	669	231	339	110	115	130	23	7	211	1.25" 7 UNC	25	374	482	6	131.7 138.9	3.67 3.78
HS13	751	292	402	130	127	150	23	7	267	1.25" 7 UNC	25	454	564	7	199 207	6.80 7.07


Figures in blue type relate to delay fill coupling only (sizes 8 and above).

* It may be necessary to use a spacer (not supplied by Renold) if shaft length is less than dimension 'G'.

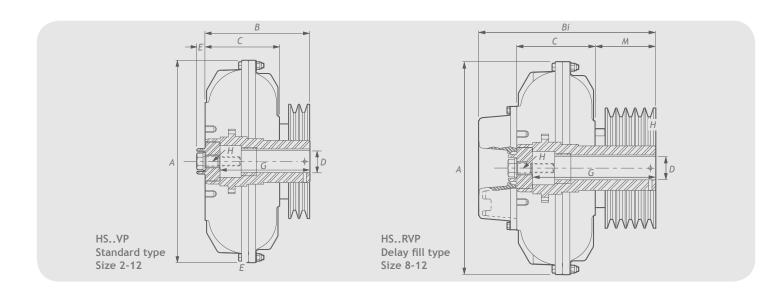


Hydrastart Pinflex Coupling - With Brake Attachment


Input

Hydrastart Pinflex Coupling and brake disc

Hydrastart Pinflex/Rigid Coupling and brake drum/disc



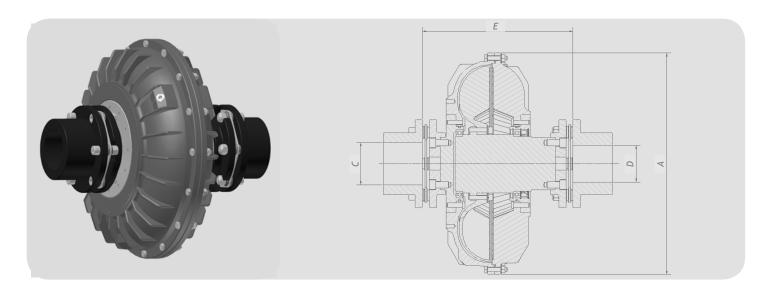
Hydrastart Gearflex Coupling - Dimensions (mm)

Size	A	В	Bi	с	D Max	E	Ei	F	G	к	Gearflex Cplg Size	Weight kgs	WR ² kgm ²
HS2	229	128		45	44	132		2	43	19	1	7.80	0.03
HS4	286	145		45	44	148		2	43	19	1	12.10	0.06
HS6	345	168		51	58	171		2	49	19	1.5	19.60	0.15
												44.20	0.49
HS8	422	223	300	64	76	226	306	2	62	29	2	47.00	0.51
												69.00	1.12
HS10	511	252	329	94	110	257	335	3	91	29	3	73.50	1.18
												100.70	2.13
HS11	580	267	358	94	110	272	363	3	91	29	3	106.80	2.22
												130.30	3.69
HS12	669	297	405	110	120	303	408	3	106	31	3.5	137.50	3.81
HS13	Details	on reques	st										

Figures in blue type relate to delay fill coupling only (sizes 8 and above). $WR^2 \mbox{ value does not include gear coupling halves.} \label{eq:relation}$

Hydrastart Pulley - Dimensions (mm)

Size	A	В	Bi	С	D max	E	G*	Н	м	Weight kgs	WR ² kgm ²	Hydrastart size	Groove profile	Max no grooves	PCD min
HS2	229	141		90	27	13	123	0.625" 11	UNC	51	4.40	HS2VP 0.02	SPZ SPA SPB	3 2 1	106 110 116
HS4	286	173		107	38	13	154	0.625" 11	UNC	66	9.30	HS4VP 0.05	SPZ SPA SPB	5 4 3	140 144 150
HS6	345	220		130	49	16	195	0.75" 10	UNC	90	15.89	HS6VP 0.13	SPZ SPA SPB SPC	6 5 4 3	162 166 172 182
HS8	422	310	387	161	75	20	267	1.00" 8	UNC	149	41.40 44.10	HS8VP 0.45 0.48	SPZ SPA SPB SPC	11 9 7 5	188 192 198 208
HS10	511	357	434	191	80	20	319	1.00" 8	UNC	166	66.70 71.20	HS10VP 1.06 1.12	SPZ SPA SPB SPC	13 10 8 6	245 250 255 265
HS11	580	418	509	205	95	20	382	1.00" 8	UNC	213	104.10 110.30	HS11VP 2.12 2.21	SPZ SPA SPB SPC	17 13 10 8	285 289 295 305
HS12	669	448	556	231	110	23	403	7	1.25" UNC	1 217	37.20 144.40	HS12VP 3.71 3.83	SPZ SPA SPB SPC	17 13 10 8	330 334 340 350


Figures in blue type relate to delay fill coupling only (sizes 8 and above).

 $^{*}\mbox{It}$ may be necessary to use a spacer (not supplied by Renold) if the shaft length is

 $\mathsf{W}\mathsf{R}^2$ value does not include the pulley.

Pulley details shown are limitations. For alternative options contact Renold.

Hydrastart Drop-in

HS - TRC dimensions in mm

Size	Α	С	D	E	Interchanges with Fluid drive FCU
HS2	279	42	35	159	7
HS4	286	42	35	165	8
HS4.5	286	48	48	194	9.25
HS6	345	48	48	210	10.5
HS6.5	345	60	60	232	11.5
HS8	422	60	60	262	12.75
HS8.5	422	80	70	287	14.5
HS10	511	80	70	335	16.25
HS10.5	511	85	83	354	17.75
HS11	580	85	83	390	20
HS12	669	110	100	457	23
HS13	751	110	100	492	26

Hydrastart interchange fluid coupling

- Interchangeable with competitors range.
- 'Drop-in' dimensions, no re-engineering needed.
- Short lead time.
- Renoldflex maintenance free steel membrane coupling.

The best range of solution chain products available anywhere

Synergy

- High performance
- Superior wear life
- Outstanding fatigue resistance

- Maintenance free
- Self-lubricating chain
- Food industry-approved lubricant

RENOLD

- Best premium chain
- Leading performance
- Solid bush / solid roller / end softened pin

Hydro-Service[™]

- Superior corrosion resistant coating
- Alternative choice to stainless steel chain
- Will not chip or peel
- Hexavalent chrome-free

Steel Pin Bush Roller Chain

- Manufactured to international stds
- Full range of pitch alternativesBreaking loads 13 to 900 kN as std
- Attachments to suit varied applications

Leaf Chain

- Comprehensive ranges used worldwide for safety critical lifting applications
- 100 years experience in developing and maintaining lifting chain

Steel Knuckle Chain

- Heavy duty, detachable elevator chains
- Integral K type attachments
- Breaking loads from 642kN to 1724kN
- Sealed joint to extend chain life

Roll-Ring[™]

- Revolutionary chain tensioner
- Installed in seconds and self adjusting
- Maintenance free
- Also acts as noise damper

Customised Engineering Chain

- Wide range to suit specialised applications using high specification materials and treatment processes
- Designed in close collaboration with customer

Smartlink[™]

- Load monitoring technology
- Technical reports & data logging

AUSTRALIA Melbourne (Victoria) Tel + 61 (03) 9262 3333 Fax + 61 (03) 9561 8561 also at: Sydney, Brisbane, Adelaide, Perth, Newcastle, Wollongong, Townsville

AUSTRIA Vienna Tel + 43 (0) 13303484 0 Fax + 43 (0) 13303484 5

BELGIUM Brussels Tel + 32 (0) 2 201 1262 Fax + 32 (0) 2 203 2210

CANADA

Brantford (Ontario) Tel + 1 519 756 6118 Fax + 1 519 756 1767 also at: Montreal

CHINA

Shanghai Tel + 86 21 5046 2696 Fax + 86 21 5046 2695

CZECH REPUBLIC

Jaroslavice Tel + 42 67 7211074 Fax + 42 67 7211074

DENMARK Brøndby (Copenhagen) Tel + 45 43 452611 Fax + 45 43 456592

FRANCE

Seclin Tel + 33 (0) 320 16 29 29 Fax + 33 (0) 320 16 29 00 Calais (chain only) Tel + 33 (0) 321 97 99 45 Fax + 33 (0) 321 97 83 45

GERMANY

Mechernich Tel + 49 (0) 2256 95 90 74 Fax + 49 (0) 2256 95 91 69 renold.deutschland@renold.com

HUNGARY

Budapest Tel + 36 30 228 3269 Fax + 36 1 287 808 peter.toka@renold.com

INDIA Colmbatore Tel +91 422 2532 357 Tel +91 422 2532 358 marketing@renold.in

MALAYSIA Petaling Jaya Tel + 603 5191 9880 Fax + 603 5191 9881 also at: Johor Bharu, Ipoh, Butterworth

NETHERLANDS Amsterdam Tel + 31 206 146661 Fax + 31 206 146391

NEW ZEALAND

Auckland Tel + (0) 64 9 828 5018 Fax + (0) 64 9 828 5019 also at: Christchurch

SINGAPORE

Singapore Tel + 65 6760 2422 Fax + 65 6760 1507

SOUTH AFRICA

Benoni Tel + (0) 27 11 747 9500 Fax + (0) 27 11 747 9505 also at: Durban, Cape Town, Port Elizabeth, Witbank

SPAIN

Renold Hi-Tec Couplings SA Tel + 34 93 6380558 Fax + 34 93 6380737 renold@renold-hitec.com

SWEDEN

Brøndby (Copenhagen) Tel + 45 43 245028 Fax + 45 43 456592

SWITZERLAND

Dübendorf (Zürich) Tel + 41 (0) 1 824 8484 Fax + 41 (0) 1 824 8411 also at: Crissier (Lausanne)

UK

Renold Clutches & Couplings, Wales Tel + 44 (0) 29 20792737 Fax + 44 (0) 29 20791360 couplings@cc.renold.com

Renold Hi-Tec Couplings, Halifax Tel + 44 (0) 1422 255000 Fax + 44 (0) 1422 320273 couplings@hitec.renold.com

Renold Gears, Milnrow Tel + 44 (0) 1706 751000 Fax + 44 (0) 1706 751001 sales@gears.renold.com

USA Renold Ajax Westfield, New York Tel + 1 716 326 3121 Fax + 1 716 326 6121

WEB www.renold.com

E-MAIL enquiry@renold.com

For other country distributors please contact Renold UK or visit the renold website.

Whilst all reasonable care in compiling the information contained in this brochure is taken, no responsibility is accepted for printing errors. All information contained in this brochure is subject to change after the date of publication.

